Source code for DLL.DeepLearning.Layers.Activations._Tanh

import torch

from ._Activation import Activation


[docs] class Tanh(Activation): """ The hyperbolic tangent activation function. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.name = "Tanh"
[docs] def forward(self, input, **kwargs): """ Calculates the hyperbolic tangent function for every element of the input matrix. Args: input (torch.Tensor of shape (batch_size, ...)): The input to the layer. Must be a torch.Tensor of any shape. Returns: torch.Tensor: The output tensor after applying the activation function of the same shape as the input. """ if not isinstance(input, torch.Tensor): raise TypeError("input must be a torch.Tensor.") self.input = input output = torch.tanh(input) return output
[docs] def backward(self, dCdy, **kwargs): """ Calculates the gradient of the loss function with respect to the input of the layer. Args: dCdy (torch.Tensor of the same shape as returned from the forward method): The gradient given by the next layer. Returns: torch.Tensor of shape (batch_size, ...): The new gradient after backpropagation through the layer. """ if not isinstance(dCdy, torch.Tensor): raise TypeError("dCdy must be a torch.Tensor.") if dCdy.shape != self.input.shape: raise ValueError(f"dCdy is not the same shape as the spesified output_shape ({dCdy.shape[1:], self.output_shape}).") dCdx = dCdy * (1 - torch.tanh(self.input) ** 2) return dCdx