Source code for DLL.DeepLearning.Layers._Flatten

import numpy as np
import torch

from ._BaseLayer import BaseLayer


[docs] class Flatten(BaseLayer): """ The flattening layer. """ def __init__(self, **kwargs): super().__init__(None, **kwargs) self.name = "Flatten" def initialise_layer(self, input_shape, data_type, device): """ :meta private: """ self.output_shape = (np.prod(input_shape),) super().initialise_layer(input_shape, data_type, device)
[docs] def forward(self, input, **kwargs): """ Flattens the input tensor into a 2 dimensional tensor. Args: input (torch.Tensor of shape (n_samples, ...)): The input to the layer. Must be a torch.Tensor of the spesified shape given by layer.input_shape. Returns: torch.Tensor of shape (n_samples, product_of_other_dimensions): The output tensor after flattening the input tensor. """ if not isinstance(input, torch.Tensor): raise TypeError("input must be a torch.Tensor.") if input.shape[-len(self.input_shape):] != self.input_shape: raise ValueError(f"input is not the same shape as the spesified input_shape ({input.shape[1:], self.input_shape}).") self.input = input return input.reshape(input.shape[0], -1)
[docs] def backward(self, dCdy, **kwargs): """ Reshapes the gradient to the original shape. Args: dCdy (torch.Tensor of shape (n_samples, product_of_other_dimensions): The gradient given by the next layer. Returns: torch.Tensor of shape (n_samples, *layer.input_shape): The reshaped gradient after backpropagation through the layer. """ if not isinstance(dCdy, torch.Tensor): raise TypeError("dCdy must be a torch.Tensor.") if dCdy.shape[1:] != self.output_shape: raise ValueError(f"dCdy is not the same shape as the spesified output_shape ({dCdy.shape[1:], self.output_shape}).") return dCdy.reshape(*self.input.shape)