Source code for DLL.DeepLearning.Losses._MAE

import torch

from ._BaseLoss import BaseLoss


[docs] class MAE(BaseLoss): """ The absolute error loss. Used for regression. Args: reduction (str, optional): The reduction method. Must be one of "mean" or "sum". """ def __init__(self, reduction="mean"): if reduction not in ["mean", "sum"]: raise ValueError('reduction must be in ["mean", "sum"].') self.reduction = reduction
[docs] def loss(self, prediction, true_output): """ Calculates the absolute error loss with the equations: .. math:: \\begin{align*} l_i &= |y_i - f(x_i)|,\\\\ L_{sum} &= \\sum_{i=1}^n l_i \\text{ or } L_{mean} = \\frac{1}{n}\\sum_{i=1}^n l_i, \\end{align*} where :math:`f(x_i)` is the predicted value and :math:`y_i` is the true value. Args: prediction (torch.Tensor): A tensor of predicted values. Must be the same shape as the true_output. true_output (torch.Tensor): A tensor of true values. Must be the same shape as the prediction. Returns: torch.Tensor: A tensor containing a single value with the loss. """ if not isinstance(prediction, torch.Tensor) or not isinstance(true_output, torch.Tensor): raise TypeError("prediction and true_output must be torch tensors.") if prediction.shape != true_output.shape: raise ValueError("prediction and true_output must have the same shape.") if self.reduction == "mean": return torch.abs(prediction - true_output).mean() return torch.abs(prediction - true_output).sum()
[docs] def gradient(self, prediction, true_output): """ Calculates the gradient of the absolute error loss. Args: prediction (torch.Tensor): A tensor of predicted values. Must be the same shape as the true_output. true_output (torch.Tensor): A tensor of true values. Must be the same shape as the prediction. Returns: torch.Tensor: A tensor of the same shape as the inputs containing the gradients. """ if not isinstance(prediction, torch.Tensor) or not isinstance(true_output, torch.Tensor): raise TypeError("prediction and true_output must be torch tensors.") if prediction.shape != true_output.shape: raise ValueError("prediction and true_output must have the same shape.") if self.reduction == "mean": return torch.sign(prediction - true_output) / prediction.shape[0] return torch.sign(prediction - true_output)
[docs] def hessian(self, prediction, true_output): """ Calculates the diagonal of the hessian matrix of the absolute error loss. Args: prediction (torch.Tensor): A tensor of predicted values. Must be the same shape as the true_output. true_output (torch.Tensor): A tensor of true values. Must be the same shape as the prediction. Returns: torch.Tensor: A tensor of the same shape as the inputs containing the diagonal of the hessian matrix. """ if not isinstance(prediction, torch.Tensor) or not isinstance(true_output, torch.Tensor): raise TypeError("prediction and true_output must be torch tensors.") if prediction.shape != true_output.shape: raise ValueError("prediction and true_output must have the same shape.") return torch.full((len(true_output),), 0)