Source code for DLL.DeepLearning.Optimisers._ADAM

import torch

from ._BaseOptimiser import BaseOptimiser


[docs] class ADAM(BaseOptimiser): """ The adaptive moment estimation optimiser. Is very robust and does not require a lot of tuning it's hyperparameters. A first order method and therefore does not use information on second gradients, i.e. the hessian matrix. Hence, does not require a lot of memory. Is based on algorithm 1 on `this paper <https://arxiv.org/pdf/1412.6980>`_. Args: learning_rate (float, optional): The learning rate of the optimiser. Must be positive. Defaults to 0.001. beta1 (float, optional): Determines how long the previous gradients affect the current step direction. Must be in range [0, 1). Defaults to 0.9. beta2 (float, optional): Determines how long the previous squared gradients affect the current step direction. Must be in range [0, 1). Defaults to 0.999. weight_decay (float, optional): Determines if regularisation should be applied to the weights. Must be in range [0, 1). Defaults to 0. amsgrad (bool, optional): Determines if a modified version of the algorithm is used. Defaults to False. """ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, weight_decay=0, amsgrad=False): if not isinstance(learning_rate, int | float) or learning_rate <= 0: raise ValueError("learning_rate must be a positive real number.") if not isinstance(beta1, int | float) or beta1 < 0 or beta1 >= 1: raise ValueError("momentum must be in range [0, 1).") if not isinstance(beta2, int | float) or beta2 < 0 or beta2 >= 1: raise ValueError("momentum must be in range [0, 1).") if not isinstance(weight_decay, int | float) or weight_decay < 0 or weight_decay >= 1: raise ValueError("weight_decay must be in range [0, 1).") self.learning_rate = learning_rate self.beta1 = beta1 self.beta2 = beta2 self.weight_decay = weight_decay self.amsgrad = amsgrad
[docs] def initialise_parameters(self, model_parameters): """ Initialises the optimiser with the parameters that need to be optimised. Args: model_parameters (list[torch.Tensor]): The parameters that will be optimised. Must be a list or a tuple of torch tensors. """ if not isinstance(model_parameters, list | tuple): raise TypeError("model_parameters must be a list or a tuple of torch tensors.") self.model_parameters = model_parameters self.m = [torch.zeros_like(parameter) for parameter in self.model_parameters] self.v = [torch.zeros_like(parameter) for parameter in self.model_parameters] self.v_max = [torch.zeros_like(parameter) for parameter in self.model_parameters] self.t = 0
[docs] def update_parameters(self): """ Takes a step towards the optimum for each parameter. """ self.t += 1 for i, parameter in enumerate(self.model_parameters): if self.weight_decay > 0: parameter.grad += self.weight_decay * parameter self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1) * parameter.grad self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * parameter.grad ** 2 m_hat = self.m[i] / (1 - self.beta1 ** self.t) v_hat = self.v[i] / (1 - self.beta2 ** self.t) if self.amsgrad: self.v_max[i] = torch.maximum(v_hat, self.v_max[i]) parameter -= self.learning_rate * m_hat / (torch.sqrt(self.v_max[i]) + 1e-10) else: parameter -= self.learning_rate * m_hat / (torch.sqrt(v_hat) + 1e-10)