Source code for DLL.DeepLearning.Optimisers._RMSPROP

import torch

from ._BaseOptimiser import BaseOptimiser


[docs] class RMSPROP(BaseOptimiser): """ The adaptive moment estimation optimiser. Is very robust and does not require a lot of tuning it's hyperparameters. A first order method and therefore does not use information on second gradients, i.e. the hessian matrix. Hence, does not require a lot of memory. Args: learning_rate (float, optional): The learning rate of the optimiser. Must be positive. Defaults to 0.001. alpha (float, optional): A smoothing constant. Defaults to 0.99. momentum (float, optional): Determines how long the previous gradients affect the current direction. Must be in range [0, 1). Defaults to 0. weight_decay (float, optional): Determines if regularisation should be applied to the weights. Must be in range [0, 1). Defaults to 0. centered (bool, optional): Determines if a centered version of the algorithm is used. Defaults to False. """ def __init__(self, learning_rate=0.001, alpha=0.99, momentum=0, weight_decay=0, centered=False): if not isinstance(learning_rate, int | float) or learning_rate <= 0: raise ValueError("learning_rate must be a positive real number.") if not isinstance(momentum, int | float) or momentum < 0 or momentum >= 1: raise ValueError("momentum must be in range [0, 1).") if not isinstance(weight_decay, int | float) or weight_decay < 0 or weight_decay >= 1: raise ValueError("weight_decay must be in range [0, 1).") self.learning_rate = learning_rate self.alpha = alpha self.momentum = momentum self.weight_decay = weight_decay self.centered = centered
[docs] def initialise_parameters(self, model_parameters): """ Initialises the optimiser with the parameters that need to be optimised. Args: model_parameters (list[torch.Tensor]): The parameters that will be optimised. Must be a list or a tuple of torch tensors. """ if not isinstance(model_parameters, list | tuple): raise TypeError("model_parameters must be a list or a tuple of torch tensors.") self.model_parameters = model_parameters self.square_average = [torch.zeros_like(parameter) for parameter in self.model_parameters] self.buffer = [torch.zeros_like(parameter) for parameter in self.model_parameters] self.g_average = [torch.zeros_like(parameter) for parameter in self.model_parameters]
[docs] def update_parameters(self): """ Takes a step towards the optimum for each parameter. """ for i, parameter in enumerate(self.model_parameters): if self.weight_decay > 0: parameter.grad += self.weight_decay * parameter self.square_average[i] = self.alpha * self.square_average[i] + (1 - self.alpha) * parameter.grad ** 2 v_tilde = self.square_average[i] if self.centered: self.g_average[i] = self.alpha * self.g_average[i] + (1 - self.alpha) * parameter.grad v_tilde -= self.g_average[i] ** 2 if self.momentum > 0: self.buffer[i] = self.momentum * self.buffer[i] + parameter.grad / (torch.sqrt(v_tilde) + 1e-10) parameter -= self.learning_rate * self.buffer[i] else: parameter -= self.learning_rate * parameter.grad / (torch.sqrt(v_tilde) + 1e-10)