Source code for DLL.DeepLearning.Optimisers._SGD

import torch

from ._BaseOptimiser import BaseOptimiser


[docs] class SGD(BaseOptimiser): """ Stochastic gradient descent optimiser with momentum. A first order method and therefore does not use information on second gradients, i.e. the hessian matrix. Hence, does not require a lot of memory. Args: learning_rate (float, optional): The learning rate of the optimiser. Must be positive. Defaults to 0.001. momentum (float, optional): Determines how long the previous gradients affect the current direction. Must be in range [0, 1). Defaults to 0.9. """ def __init__(self, learning_rate=0.001, momentum=0.9): if not isinstance(learning_rate, int | float) or learning_rate <= 0: raise ValueError("learning_rate must be a positive real number.") if not isinstance(momentum, int | float) or momentum < 0 or momentum >= 1: raise ValueError("momentum must be in range [0, 1).") self.learning_rate = learning_rate self.momentum = momentum
[docs] def initialise_parameters(self, model_parameters): """ Initialises the optimiser with the parameters that need to be optimised. Args: model_parameters (list[torch.Tensor]): The parameters that will be optimised. Must be a list or a tuple of torch tensors. """ if not isinstance(model_parameters, list | tuple): raise TypeError("model_parameters must be a list or a tuple of torch tensors.") self.model_parameters = model_parameters self.changes = [torch.zeros_like(parameter) for parameter in self.model_parameters]
[docs] def update_parameters(self): """ Takes a step towards the optimum for each parameter. """ for i, parameter in enumerate(self.model_parameters): change = self.learning_rate * parameter.grad + self.momentum * self.changes[i] parameter -= change self.changes[i] = change