Source code for DLL.MachineLearning.SupervisedLearning.LinearModels._LogisticRegression

import torch
from math import floor

from ....DeepLearning.Losses import BCE, CCE
from ....DeepLearning.Layers.Activations import Sigmoid, SoftMax
from ....Data.Metrics import calculate_metrics, _round_dictionary, prob_to_pred
from ....Data import DataReader
from ....DeepLearning.Optimisers import ADAM
from ....DeepLearning.Optimisers._BaseOptimiser import BaseOptimiser
from ....Exceptions import NotFittedError
from ....Data.Preprocessing import OneHotEncoder


[docs] class LogisticRegression: """ Implements a logistic regression model for binary and multi-class classification. Args: learning_rate (float, optional): The step size towards the negative gradient. Must be a positive real number. Defaults to 0.01. Attributes: n_features (int): The number of features. Available after fitting. weights (torch.Tensor of shape (n_features,)): The weights of the logistic regression model. Available after fitting. bias (torch.Tensor of shape (1,)): The constant of the model. Available after fitting. """ def __init__(self, learning_rate=0.001): if not isinstance(learning_rate, float) or learning_rate <= 0: raise ValueError("learning_rate must be a positive real number.") self.learning_rate = learning_rate
[docs] def fit(self, X, y, sample_weight=None, val_data=None, epochs=100, optimiser=None, callback_frequency=1, metrics=["loss"], batch_size=None, shuffle_every_epoch=True, shuffle_data=True, verbose=False): """ Fits the LogisticRegression model to the input data by minimizing the cross entropy loss (logistic loss). Args: X (torch.Tensor of shape (n_samples, n_features)): The input data, where each row is a sample and each column is a feature. y (torch.Tensor of shape (n_samples,)): The labels corresponding to each sample. Every element must be in [0, ..., n_classes - 1]. val_data (tuple[X_val, y_val] | None, optional): Optional validation samples. If None, no validation data is used. Defaults to None. epochs (int, optional): The number of training iterations. Must be a positive integer. Defaults to 100. optimiser (:ref:`optimisers_section_label` | None, optional): The optimiser used for training the model. If None, the Adam optimiser is used. callback_frequency (int, optional): The number of iterations between printing info from training. Must be a positive integer. Defaults to 1, which means that every iteration, info is printed assuming verbose=True. metrics (list[str], optional): The metrics that will be tracked during training. Defaults to ["loss"]. batch_size (int | None, optional): The batch size used in training. Must be a positive integer. If None, every sample is used for every gradient calculation. Defaults to None. shuffle_every_epoch (bool, optional): If True, shuffles the order of the samples every epoch. Defaults to True. shuffle_data (bool, optional): If True, shuffles data before the training. verbose (bool, optional): If True, prints info of the chosen metrics during training. Defaults to False. Returns: history (dict[str, torch.Tensor], each tensor is floor(epochs / callback_frequency) long.): A dictionary tracking the evolution of selected metrics at intervals defined by callback_frequency. Raises: TypeError: If the input matrix or the target matrix is not a PyTorch tensor or if other parameters are of wrong type. ValueError: If the input matrix or the target matrix is not the correct shape or if other parameters have incorrect values. """ if not isinstance(X, torch.Tensor) or not isinstance(y, torch.Tensor): raise TypeError("The input matrix and the target matrix must be a PyTorch tensor.") if X.ndim != 2: raise ValueError("The input matrix must be a 2 dimensional tensor.") if y.ndim != 1 or len(y) != len(X): raise ValueError("The targets must be 1 dimensional with the same number of samples as the input data") if not isinstance(val_data, list | tuple) and val_data is not None: raise TypeError("val_data must either be a tuple containing validation samples or None.") if isinstance(val_data, list | tuple) and len(val_data) != 2: raise ValueError("val_data must contain both X_val and y_val.") if isinstance(val_data, list | tuple) and len(val_data) == 2 and (val_data[0].ndim != 2 or val_data[1].ndim != 1 or val_data[0].shape[1] != X.shape[1] or len(val_data[0]) != len(val_data[1])): raise ValueError("X_val and y_val must be of correct shape.") if not isinstance(epochs, int) or epochs <= 0: raise ValueError("epochs must be a positive integer.") if not isinstance(optimiser, BaseOptimiser) and optimiser is not None: raise TypeError("optimiser must be from DLL.DeepLearning.Optimisers") if not isinstance(callback_frequency, int) or callback_frequency <= 0: raise ValueError("callback_frequency must be a positive integer.") if not isinstance(metrics, list | tuple): raise TypeError("metrics must be a list or a tuple containing the strings of wanted metrics.") if (not isinstance(batch_size, int) or batch_size <= 0) and batch_size is not None: raise ValueError("batch_size must be a positive integer.") if not isinstance(shuffle_every_epoch, bool): raise TypeError("shuffle_every_epoch must be a boolean.") if not isinstance(shuffle_data, bool): raise TypeError("shuffle_data must be a boolean.") if not isinstance(verbose, bool): raise TypeError("verbose must be a boolean.") vals = torch.unique(y).numpy() if set(vals) != {*range(len(vals))}: raise ValueError("y must only contain the values in [0, ..., n_classes - 1].") if not isinstance(sample_weight, torch.Tensor) and sample_weight is not None: raise TypeError("sample_weight must be torch.Tensor or None.") if isinstance(sample_weight, torch.Tensor) and (sample_weight.ndim != 1 or len(X) != len(sample_weight)): raise ValueError("sample_weight must be of shape (n_samples,)") n_samples, self.n_features = X.shape if len(vals) == 2: # normal logistic regression self.loss = BCE() self.activation = Sigmoid() weight_shape = (self.n_features,) self.multiclass = False elif len(vals) > 2: # multiple logistic regression encoder = OneHotEncoder() y = encoder.fit_encode(y) self.multiclass = True self.loss = CCE() self.activation = SoftMax() weight_shape = (self.n_features, y.shape[1]) history = {metric: torch.zeros(floor(epochs / callback_frequency)) for metric in metrics} batch_size = len(X) if batch_size is None else n_samples data_reader = DataReader(X, y, batch_size=batch_size, shuffle=shuffle_data, shuffle_every_epoch=shuffle_every_epoch) if sample_weight is None: sample_weight = torch.ones(n_samples) sample_weight = sample_weight / torch.sum(sample_weight) self.weights = torch.randn(weight_shape) self.bias = torch.zeros((1,)) if len(weight_shape) == 1 else torch.zeros(y.shape[1]) optimiser = ADAM() if optimiser is None else optimiser optimiser.learning_rate = self.learning_rate optimiser.initialise_parameters([self.weights, self.bias]) for epoch in range(epochs): for x_batch, y_batch in data_reader.get_data(): y_linear = x_batch @ self.weights + self.bias predictions = self.activation.forward(y_linear) bce_derivative = self.loss.gradient(predictions, y_batch) dCdy = self.activation.backward(bce_derivative) self.weights.grad = x_batch.T @ dCdy self.bias.grad = torch.mean(dCdy, dim=0, keepdim=(y.ndim == 1)) optimiser.update_parameters() if epoch % callback_frequency == 0: values = calculate_metrics(data=(self.predict_proba(X), y), metrics=metrics, loss=self.loss.loss) if val_data is not None: val_values = calculate_metrics(data=(self.predict_proba(val_data[0]), val_data[1]), metrics=metrics, loss=self.loss.loss, validation=True) values |= val_values for metric, value in values.items(): history[metric][int(epoch / callback_frequency)] = value if verbose: print(f"Epoch: {epoch + 1} - Metrics: {_round_dictionary(values)}") return history
[docs] def predict(self, X): """ Applies the fitted LogisticRegression model to the input data, predicting the labels. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: target values (torch.Tensor of shape (n_samples,)): The predicted values corresponding to each sample. Raises: NotFittedError: If the LogisticRegression model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if not hasattr(self, "weights"): raise NotFittedError("LogisticRegression.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") probs = self.activation.forward(X @ self.weights + self.bias) return prob_to_pred(probs)
[docs] def predict_proba(self, X): """ Applies the fitted LogisticRegression model to the input data, predicting the probabilities of each class. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: target values (torch.Tensor of shape (n_samples,)): The predicted values corresponding to each sample. Raises: NotFittedError: If the LogisticRegression model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if not hasattr(self, "weights"): raise NotFittedError("LogisticRegression.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") return self.activation.forward(X @ self.weights + self.bias)