Source code for DLL.MachineLearning.SupervisedLearning.NaiveBayes._GaussianNaiveBayes

import torch

from ....Exceptions import NotFittedError


[docs] class GaussianNaiveBayes: """ The GaussianNaiveBayes classifier model. Applies the Bayes theorem to classify samples with real number features. Attributes: n_features (int): The number of features. Available after fitting. n_classes (int): The number of classes. Available after fitting. """
[docs] def fit(self, X, y): """ Fits the GaussianNaiveBayes model to the input data by calculating the prior probabilities and likelihoods. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data, where each row is a sample and each column is a feature. y (torch.Tensor of shape (n_samples,)): The labels corresponding to each sample. Every element must be in [0, ..., n_classes - 1]. Returns: None Raises: TypeError: If the input matrix or the label matrix is not a PyTorch tensor. ValueError: If the input matrix or the label matrix is not the correct shape. """ if not isinstance(X, torch.Tensor) or not isinstance(y, torch.Tensor): raise TypeError("The input matrix and the label matrix must be PyTorch tensors.") if X.ndim != 2: raise ValueError("The input matrix must be a 2 dimensional tensor.") if y.ndim != 1 or y.shape[0] != X.shape[0]: raise ValueError("The labels must be 1 dimensional with the same number of samples as the input data") vals = torch.unique(y).numpy() if set(vals) != {*range(len(vals))}: raise ValueError("y must only contain the values in [0, ..., n_classes - 1].") n, self.n_features = X.shape self.n_classes = len(vals) self.means = torch.zeros((self.n_classes, self.n_features), dtype=X.dtype) self.vars = torch.zeros_like(self.means, dtype=X.dtype) self.priors = torch.zeros((self.n_classes,), dtype=X.dtype) for i in range(self.n_classes): X_cls = X[y == i] self.means[i] = X_cls.mean(dim=0) self.vars[i] = X_cls.var(dim=0) self.priors[i] = len(X_cls) / n
[docs] def predict(self, X): """ Applies the fitted GaussianNaiveBayes model to the input data, predicting the labels. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: labels (torch.Tensor of shape (n_samples,)): The predicted target values corresponding to each sample. Raises: NotFittedError: If the GaussianNaiveBayes model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if not hasattr(self, "priors"): raise NotFittedError("GaussianNaiveBayes.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") posteriors = torch.zeros((self.n_classes, len(X)), dtype=X.dtype) for i in range(self.n_classes): prior = torch.log(self.priors[i]) posterior = torch.log(self._pdf(X, self.means[i], self.vars[i])).sum(dim=1) + prior posteriors[i] = posterior return torch.argmax(posteriors, dim=0)
[docs] def predict_proba(self, X): """ Applies the fitted GaussianNaiveBayes model to the input data, predicting the probabilities. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: labels (torch.Tensor of shape (n_samples,)): The predicted target values corresponding to each sample. Raises: NotFittedError: If the GaussianNaiveBayes model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if not hasattr(self, "priors"): raise NotFittedError("GaussianNaiveBayes.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") posteriors = torch.zeros((self.n_classes, len(X)), dtype=X.dtype) for i in range(self.n_classes): prior = torch.log(self.priors[i]) posterior = torch.log(self._pdf(X, self.means[i], self.vars[i])).sum(dim=1) + prior posteriors[i] = posterior prob_normalizers = torch.logsumexp(posteriors, dim=0) log_probs = posteriors - prob_normalizers probs = torch.exp(log_probs).T if self.n_classes == 2: # binary classification probs = probs[:, 1] return probs
def _pdf(self, x, mean, var): return torch.exp(-(x - mean) ** 2 / (2 * var)) / torch.sqrt(2 * torch.pi * var)