Source code for DLL.MachineLearning.SupervisedLearning.Trees._DecisionTree

import torch

from ....Exceptions import NotFittedError


class Node:
    def __init__(self, left=None, right=None, threshold=None, feature_index=None, value=None, probabilities=None, size=None, depth=None):
        self.left = left
        self.right = right
        self.threshold = threshold
        self.feature_index = feature_index
        self.value = value
        self.probabilities = probabilities
        self.size = size
        self.depth = depth

    def is_leaf(self):
        return self.value is not None


[docs] class DecisionTree: """ DecisionTree implements a classification algorithm splitting the data along features yielding the maximum entropy. Args: max_depth (int, optional): The maximum depth of the tree. Defaults to 10. Must be a positive integer. min_samples_split (int, optional): The minimum required samples in a leaf to make a split. Defaults to 2. Must be a positive integer. criterion (str, optional): The information criterion used to select optimal splits. Must be one of "entropy" or "gini". Defaults to "gini". ccp_alpha (non-negative float, optional): Determines how easily subtrees are pruned in cost-complexity pruning. The larger the value, more subtrees are pruned. Defaults to 0.0. Attributes: n_classes (int): The number of classes. A positive integer available after calling DecisionTree.fit(). classes (torch.Tensor of shape (n_classes,)): The classes in an arbitrary order. Available after calling DecisionTree.fit(). """ def __init__(self, max_depth=10, min_samples_split=2, criterion="gini", ccp_alpha=0.0): if not isinstance(max_depth, int) or max_depth < 1: raise ValueError("max_depth must be a positive integer.") if not isinstance(min_samples_split, int) or min_samples_split < 1: raise ValueError("min_samples_split must be a positive integer.") if criterion not in ["entropy", "gini"]: raise ValueError('The chosen criterion must be one of "entropy" or "gini".') if not isinstance(ccp_alpha, int | float) or ccp_alpha < 0: raise ValueError("ccp_alpha must be non-negative.") self.max_depth = max_depth self.min_samples_split = min_samples_split self.criterion = criterion self.root = None self.ccp_alpha = ccp_alpha
[docs] def fit(self, X, y): """ Fits the DecisionTree model to the input data by generating a tree, which splits the data appropriately. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data, where each row is a sample and each column is a feature. y (torch.Tensor of shape (n_samples,)): The labels corresponding to each sample. Returns: None Raises: TypeError: If the input matrix or the label matrix is not a PyTorch tensor. ValueError: If the input matrix or the label matrix is not the correct shape. """ if not isinstance(X, torch.Tensor) or not isinstance(y, torch.Tensor): raise TypeError("The input matrix and the label matrix must be a PyTorch tensor.") if X.ndim != 2: raise ValueError("The input matrix must be a 2 dimensional tensor.") if y.ndim != 1 or y.shape[0] != X.shape[0]: raise ValueError("The labels must be 1 dimensional with the same number of samples as the input data") self.n_samples, self.n_features = X.shape self.classes = torch.unique(y) self.n_classes = len(self.classes) self.root = self._grow_tree(X, y, 0) if self.ccp_alpha > 0: self.root, _, _ = self._prune(self.root, X, y)
def _grow_tree(self, x, y, depth): n_samples, n_features = x.size() classes, counts = torch.unique(y, return_counts=True) if depth >= self.max_depth or len(classes) == 1 or n_samples < self.min_samples_split: largest_class = classes[torch.argmax(counts)] probabilities = torch.tensor([(counts[torch.where(classes == _class)[0]] / len(y) if _class in classes else 0) for _class in self.classes]) return Node(value=largest_class, probabilities=probabilities) feature_indicies = torch.randperm(n_features)[:self.n_features] split_threshold, split_index = self._best_split(x, y, feature_indicies) # if no split gains more information if split_threshold is None: largest_class = classes[torch.argmax(counts)] probabilities = torch.tensor([(counts[torch.where(classes == _class)[0]] / len(y) if _class in classes else 0) for _class in self.classes]) return Node(value=largest_class, probabilities=probabilities) left_indicies, right_indicies = self._split(x[:, split_index], split_threshold) left = self._grow_tree(x[left_indicies], y[left_indicies], depth + 1) right = self._grow_tree(x[right_indicies], y[right_indicies], depth + 1) return Node(left, right, split_threshold, split_index) def _best_split(self, x, y, feature_indicies): max_entropy_gain = -1 split_index = None split_threshold = None for index in feature_indicies: feature_values = x[:, index] possible_thresholds = torch.unique(feature_values) for threshold in possible_thresholds: entropy_gain = self._information_gain(y, feature_values, threshold) if entropy_gain > max_entropy_gain: max_entropy_gain = entropy_gain split_index = index split_threshold = threshold if max_entropy_gain <= 0: return None, None return split_threshold, split_index def _split(self, feature_values, threshold): left_indicies = torch.argwhere(feature_values <= threshold).flatten() right_indicies = torch.argwhere(feature_values > threshold).flatten() return left_indicies, right_indicies def _information_gain(self, y, feature_values, threshold): if self.criterion == "gini": information_func = self._gini elif self.criterion == "entropy": information_func = self._entropy left_indicies, right_indicies = self._split(feature_values, threshold) if len(left_indicies) == 0 or len(right_indicies) == 0: return 0 n = len(y) return information_func(y) - len(left_indicies) / n * information_func(y[left_indicies]) - len(right_indicies) / n * information_func(y[right_indicies]) def _entropy(self, values): n = len(values) data_type = values.dtype p = torch.bincount(values.to(dtype=torch.int32)).to(dtype=data_type) / n p = p[p != 0] # remove non-zero classes from messing up the calculations return -torch.sum(p * torch.log(p)) def _gini(self, values): n = len(values) data_type = values.dtype p = torch.bincount(values.to(dtype=torch.int32)).to(dtype=data_type) / n return torch.sum(p * (1 - p))
[docs] def predict(self, X): """ Applies the fitted DecisionTree model to the input data, predicting the correct classes. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: labels (torch.Tensor of shape (n_samples,)): The predicted labels corresponding to each sample. Raises: NotFittedError: If the DecisionTree model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if self.root is None: raise NotFittedError("DecisionTree.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") return torch.tensor([self._predict_single(datapoint, self.root) for datapoint in X])
def _predict_single(self, x, current_node, proba=False): if current_node.is_leaf(): if proba: return current_node.probabilities return current_node.value if x[current_node.feature_index] <= current_node.threshold: return self._predict_single(x, current_node.left, proba=proba) return self._predict_single(x, current_node.right, proba=proba)
[docs] def predict_proba(self, X): """ Applies the fitted DecisionTree model to the input data, predicting the probabilities of each class. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: probabilities (torch.Tensor of shape (n_samples, n_classes)): The predicted probabilities corresponding to each sample. Raises: NotFittedError: If the DecisionTree model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if self.root is None: raise NotFittedError("DecisionTree.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") return torch.stack([self._predict_single(datapoint, self.root, proba=True) for datapoint in X])
def _prune(self, node, X, y): classes, counts = torch.unique(y, return_counts=True) m = len(y) - torch.min(counts).item() if node.is_leaf(): return node, m / self.n_samples, 1 left_indicies, right_indicies = self._split(X[:, node.feature_index], node.threshold) node.left, left_cost, left_leaf_nodes = self._prune(node.left, X[left_indicies], y[left_indicies]) node.right, right_cost, right_leaf_nodes = self._prune(node.right, X[right_indicies], y[right_indicies]) subtree_cost = left_cost + right_cost total_subleaves = left_leaf_nodes + right_leaf_nodes leaf_miss_classification_error_rate = m / self.n_samples new_leaf_nodes = 1 subtree_cost_with_n_nodes_penalty = subtree_cost + self.ccp_alpha * total_subleaves if leaf_miss_classification_error_rate + self.ccp_alpha * new_leaf_nodes < subtree_cost_with_n_nodes_penalty: largest_class = classes[torch.argmax(counts)] probabilities = torch.tensor([(counts[torch.where(classes == _class)[0]] / len(y) if _class in classes else 0) for _class in self.classes]) return Node(value=largest_class, probabilities=probabilities), leaf_miss_classification_error_rate, 1 return node, subtree_cost, total_subleaves