Source code for DLL.MachineLearning.SupervisedLearning.Trees._LGBMClassifier

import torch


from ._LGBMTree import _LGBMTree, _ExclusiveFeatureBundling
from ....DeepLearning.Layers.Activations import Sigmoid, SoftMax
from ....DeepLearning.Losses import BCE, CCE, Exponential
from ....Data.Preprocessing import OneHotEncoder
from ....Exceptions import NotFittedError
from ....Data.Metrics import calculate_metrics, prob_to_pred


[docs] class LGBMClassifier: """ LGBMClassifier implements a classification algorithm fitting many consecutive trees to gradients and hessians of the predictions. Args: n_trees (int, optional): The number of trees used for predicting. Defaults to 10. Must be a positive integer. learning_rate (float, optional): The number multiplied to each additional trees residuals. Must be a real number in range (0, 1). Defaults to 0.5. max_depth (int, optional): The maximum depth of the tree. Defaults to 25. Must be a positive integer. min_samples_split (int, optional): The minimum required samples in a leaf to make a split. Defaults to 2. Must be a positive integer. n_bins (int, optional): The number of bins used to find the optimal split of data. Must be greater than 1. Defaults to 30. reg_lambda (float | int, optional): The regularisation parameter used in fitting the trees. The larger the parameter, the smaller the trees. Must be a positive real number. Defaults to 1. gamma (float | int, optional): The minimum gain to make a split. Must be a non-negative real number. Defaults to 0. large_error_proportion (float, optional): The proportion of the whole data with the largest error, which is always used to train the next weak learner. Defaults to 0.3. small_error_proportion (float, optional): The proportion of data randomly selected from the remaining (1 - large_error_proportion) percent of data to train the next weak learner. Defaults to 0.2. loss (string, optional): The loss function used in calculations of the residuals. Must be one of "log_loss" or "exponential". Defaults to "log_loss". "exponential" can only be used for binary classification. max_conflict_rate (float, optional): The proportion of samples, which are allowed to be nonzero without featuers being bundled. Is ignored if use_efb=False. Defaults to 0.0. use_efb (bool, optional): Determines if the exclusive feature bundling algorithm is used. Defaults to True. Attributes: n_features (int): The number of features. Available after fitting. n_classes (int): The number of classes. 2 for binary classification. Available after fitting. """ def __init__(self, n_trees=10, learning_rate=0.5, max_depth=25, min_samples_split=2, n_bins=30, reg_lambda=1, gamma=0, large_error_proportion=0.3, small_error_proportion=0.2, loss="log_loss", max_conflict_rate=0.0, use_efb=True): if not isinstance(n_trees, int) or n_trees < 1: raise ValueError("n_trees must be a positive integer.") if not isinstance(learning_rate, float) or learning_rate <= 0 or learning_rate >= 1: raise ValueError("learning_rate must be a float in range (0, 1).") if not isinstance(max_depth, int) or max_depth < 1: raise ValueError("max_depth must be a positive integer.") if not isinstance(min_samples_split, int) or min_samples_split < 1: raise ValueError("min_samples_split must be a positive integer.") if not isinstance(n_bins, int) or n_bins <= 1: raise ValueError("n_bins must be an integer greater than 1.") if not isinstance(reg_lambda, int | float) or reg_lambda <= 0: raise ValueError("reg_lambda must be a positive real number.") if not isinstance(gamma, int | float) or gamma < 0: raise ValueError("gamma must be a non-negative real number.") if not isinstance(large_error_proportion, float) or large_error_proportion <= 0 or large_error_proportion >= 1: raise ValueError("large_error_proportion must be a float in range (0, 1).") if not isinstance(small_error_proportion, float) or small_error_proportion <= 0 or small_error_proportion >= 1: raise ValueError("small_error_proportion must be a float in range (0, 1).") if loss not in ["log_loss", "exponential"]: raise ValueError('loss must be one of ["log_loss", "exponential"]') if not isinstance(max_conflict_rate, float) or max_conflict_rate < 0 or max_conflict_rate >= 1: raise ValueError("max_conflict_rate must be a float in range [0, 1).") if not isinstance(use_efb, bool): raise TypeError("use_efb must be a boolean.") self.n_trees = n_trees self.learning_rate = learning_rate self.max_depth = max_depth self.min_samples_split = min_samples_split self.n_bins = n_bins self.reg_lambda = reg_lambda self.gamma = gamma self.trees = None self.large_error_proportion = large_error_proportion self.small_error_proportion = small_error_proportion self.loss_ = loss self.use_efb = use_efb if self.use_efb: self.efb = _ExclusiveFeatureBundling(max_conflict_rate=max_conflict_rate, n_bins=n_bins) def _get_activation_and_loss(self, classes): self.n_classes = len(classes) if self.loss_ == "log_loss": if self.n_classes == 2: self.loss = BCE(reduction="sum") self.activation = Sigmoid() else: self.loss = CCE(reduction="sum") self.activation = SoftMax() elif self.loss_ == "exponential": if self.n_classes != 2: raise ValueError("The exponential loss is only applicable in binary classification. Use log_loss for multiclass classification instead.") self.loss = Exponential(reduction="sum") self.activation = Sigmoid()
[docs] def fit(self, X, y, metrics=["loss"]): """ Fits the LGBMClassifier model to the input data by fitting trees to the errors made by previous trees. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data, where each row is a sample and each column is a feature. y (torch.Tensor of shape (n_samples,)): The labels corresponding to each sample. Every element must be in [0, ..., n_classes - 1]. metrics (dict[str, torch.Tensor]): Contains the metrics that will be calculated between fitting each tree and returned. Only available for binary classification. Returns: metrics if binary classification else None Raises: TypeError: If the input matrix or the label vector is not a PyTorch tensor or if the problem is binary and metrics is not a list or a tuple. ValueError: If the input matrix or the label vector is not the correct shape or the label vector contains wrong values. """ if not isinstance(X, torch.Tensor) or not isinstance(y, torch.Tensor): raise TypeError("The input matrix and the label matrix must be a PyTorch tensor.") if X.ndim != 2: raise ValueError("The input matrix must be a 2 dimensional tensor.") if y.ndim != 1 or y.shape[0] != X.shape[0]: raise ValueError("The labels must be 1 dimensional with the same number of samples as the input data") vals = torch.unique(y).numpy() if set(vals) != {*range(len(vals))}: raise ValueError("y must only contain the values in [0, ..., n_classes - 1].") self._get_activation_and_loss(vals) y = y.to(X.dtype) self.n_features = X.shape[1] if self.use_efb: X = self.efb.fit_transform(X) if self.n_classes == 2: if not isinstance(metrics, list | tuple): raise ValueError("metrics must be a list or tuple containing the shorthand names of each wanted metric.") return self._binary_fit(X, y, metrics=metrics) else: self._multi_fit(X, y)
def _binary_hessian_diag(self, prob, true_output): loss_gradient = self.loss.gradient(prob, true_output) loss_hessian = self.loss.hessian(prob, true_output) sigmoid_value = prob sigmoid_gradient = self.activation.backward(loss_gradient) first_term = sigmoid_gradient * (1 - sigmoid_value) * loss_gradient second_term = -sigmoid_value * sigmoid_gradient * loss_gradient third_term = sigmoid_value * (1 - sigmoid_value) * loss_hessian # is the same as self.activation.backward(loss_hessian) return first_term + second_term + third_term def _multi_hessian_diag(self, prob, true_output): loss_gradient = self.loss.gradient(prob, true_output) loss_hessian = self.loss.hessian(prob, true_output) softmax_value = prob softmax_gradient = self.activation.backward(loss_gradient) softmax_hessian = softmax_value * (1 - softmax_value) * (1 - 2 * softmax_value) # From Mathematica: D[f[g[x]], {x, 2}] = Derivative[1][g][x]^2 (f^\[Prime]\[Prime])[g[x]] + Derivative[1][f][g[x]] (g^\[Prime]\[Prime])[x] return softmax_gradient ** 2 * loss_hessian + loss_gradient * softmax_hessian def _binary_fit(self, X, y, metrics=["loss"]): positive_ratio = y.mean() self.initial_log_odds = torch.log(positive_ratio / (1 - positive_ratio)) pred = torch.full(y.shape, self.initial_log_odds) trees = [] history = {metric: torch.zeros(self.n_trees) for metric in metrics} top_n = int(len(y) * self.large_error_proportion) rand_n = int(len(y) * self.small_error_proportion) fact = (1 - self.large_error_proportion) / self.small_error_proportion for i in range(self.n_trees): prob = self.activation.forward(pred) gradient = self.activation.backward(self.loss.gradient(prob, y)) hessian = self._binary_hessian_diag(prob, y) # GOSS (gradient-based one-sided sampling) indicies = torch.argsort(gradient, descending=True) large_error_indicies = indicies[:top_n] small_error_indicies = indicies[torch.randperm(len(indicies) - len(large_error_indicies))[:rand_n] + top_n] train_indicies = torch.cat([large_error_indicies, small_error_indicies]) hessian[small_error_indicies] *= fact tree = _LGBMTree(max_depth=self.max_depth, min_samples_split=self.min_samples_split, n_bins=self.n_bins, reg_lambda=self.reg_lambda, gamma=self.gamma) tree.fit(X[train_indicies], gradient[train_indicies], hessian[train_indicies]) prediction = tree.predict(X) pred += self.learning_rate * prediction trees.append(tree) values = calculate_metrics(data=(self.activation.forward(pred), y), metrics=metrics, loss=self.loss.loss) for metric, value in values.items(): history[metric][i] = value self.trees = trees return history def _multi_fit(self, X, y): encoder = OneHotEncoder() y = encoder.fit_encode(y) self.initial_log_odds = 0.0 pred = torch.full(y.shape, self.initial_log_odds) trees = [] top_n = int(len(y) * self.large_error_proportion) rand_n = int(len(y) * self.small_error_proportion) fact = (1 - self.large_error_proportion) / self.small_error_proportion for class_index in range(self.n_classes): class_trees = [] for _ in range(self.n_trees): prob = self.activation.forward(pred) gradient = self.activation.backward(self.loss.gradient(prob, y))[:, class_index] hessian = self._multi_hessian_diag(prob, y)[:, class_index] # GOSS (gradient-based one-sided sampling) indicies = torch.argsort(gradient, descending=True) large_error_indicies = indicies[:top_n] small_error_indicies = indicies[torch.randperm(len(indicies) - len(large_error_indicies))[:rand_n] + top_n] train_indicies = torch.cat([large_error_indicies, small_error_indicies]) hessian[small_error_indicies] *= fact tree = _LGBMTree(max_depth=self.max_depth, min_samples_split=self.min_samples_split, n_bins=self.n_bins, reg_lambda=self.reg_lambda, gamma=self.gamma) tree.fit(X[train_indicies], gradient[train_indicies], hessian[train_indicies]) prediction = tree.predict(X) pred[:, class_index] += self.learning_rate * prediction class_trees.append(tree) trees.append(class_trees) self.trees = trees
[docs] def predict_proba(self, X): """ Applies the fitted LGBMClassifier model to the input data, predicting the probabilities of each class. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: probabilities (torch.Tensor of shape (n_samples, n_classes) or for binary classification (n_samples,)): The predicted probabilities corresponding to each sample. Raises: NotFittedError: If the LGBMClassifier model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if not hasattr(self, "initial_log_odds"): raise NotFittedError("LGBMClassifier.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") if self.use_efb: X = self.efb.fit_transform(X) if self.n_classes > 2: return self._multi_predict_proba(X) pred = torch.full((X.shape[0],), self.initial_log_odds) for tree in self.trees: prediction = tree.predict(X) pred += self.learning_rate * prediction return self.activation.forward(pred)
[docs] def predict(self, X): """ Applies the fitted LGBMClassifier model to the input data, predicting the correct classes. Args: X (torch.Tensor of shape (n_samples, n_features)): The input data to be classified. Returns: labels (torch.Tensor of shape (n_samples,)): The predicted labels corresponding to each sample. Raises: NotFittedError: If the LGBMClassifier model has not been fitted before predicting. TypeError: If the input matrix is not a PyTorch tensor. ValueError: If the input matrix is not the correct shape. """ if not hasattr(self, "initial_log_odds"): raise NotFittedError("LGBMClassifier.fit() must be called before predicting.") if not isinstance(X, torch.Tensor): raise TypeError("The input matrix must be a PyTorch tensor.") if X.ndim != 2 or X.shape[1] != self.n_features: raise ValueError("The input matrix must be a 2 dimensional tensor with the same number of features as the fitted tensor.") if self.use_efb: X = self.efb.fit_transform(X) prob = self.predict_proba(X) return prob_to_pred(prob)
def _multi_predict_proba(self, X): pred = torch.full((X.shape[0], self.n_classes), self.initial_log_odds) for i in range(self.n_classes): class_trees = self.trees[i] for tree in class_trees: pred[:, i] += self.learning_rate * tree.predict(X) return self.activation.forward(pred)