Note
Go to the end to download the full example code.
Outlier detection using isolation forest
This script samples data points from a multivariate normal distribution, adds an outlier and tries to detect it using DLL.MachineLearning.UnsupervisedLearning.OutlierDetection.IsolationForest.

[0.35, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.36, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.37, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.39, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.46, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.47, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.49, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.51, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.53, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.56, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.58, 0.59, 0.59, 0.59, 0.59, 0.59, 0.59, 0.59, 0.59, 0.59, 0.59, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.61, 0.61, 0.61, 0.61, 0.61, 0.62, 0.62, 0.62, 0.63, 0.63, 0.63, 0.63, 0.63, 0.64, 0.64, 0.64, 0.64, 0.64, 0.65, 0.65, 0.65, 0.65, 0.65, 0.65, 0.67, 0.67, 0.67, 0.68, 0.68, 0.68, 0.68, 0.69, 0.7, 0.72, 0.75, 0.87]
import torch
import numpy as np
import matplotlib.pyplot as plt
from DLL.MachineLearning.UnsupervisedLearning.OutlierDetection import IsolationForest
mean = [0, 0]
cov = [[1, 0], [0, 1]]
n = 2000
X1, X2 = np.random.multivariate_normal(mean, cov, n).T
X1[0] = 5
X2[0] = 5
X = torch.from_numpy(np.array([X1, X2]).T)
model = IsolationForest(n_trees=25, threshold=6)
predictions = model.fit_predict(X)
print(sorted([round(score, 2) for score in model.fit_predict(X, return_scores=True).tolist()]))
plt.scatter(X[:, 0][predictions], X[:, 1][predictions], label="Outliers")
plt.scatter(X[:, 0][~predictions], X[:, 1][~predictions], label="Inliers")
plt.legend()
plt.show()
Total running time of the script: (0 minutes 28.054 seconds)